Derivation of homogenized Euler–Lagrange equations for von Kármán rods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on constrained von Kármán theories.

We derive the Euler-Lagrange equation corresponding to 'non-Euclidean' convex constrained von Kármán theories.

متن کامل

Local and Homogenized Equations

Homogenization theory is concerned with finding the appropriate homogenized (or averaged, or macroscopic) governing partial differential equations describing physical processes occurring in heterogeneous materials when the length scale of the heterogeneities tends to zero. In such instances it is desired that the effects of the microstructure reside wholly in the macroscopic or effective proper...

متن کامل

Solvability of Dynamic Contact Problems for Elastic von Kármán Plates

The existence of solutions is proved for unilateral dynamic contact problems of elastic von Kármán plates. Boundary conditions for a free and clamped plate are considered.

متن کامل

Superfluid high REynolds von Kármán experiment.

The Superfluid High REynolds von Kármán experiment facility exploits the capacities of a high cooling power refrigerator (400 W at 1.8 K) for a large dimension von Kármán flow (inner diameter 0.78 m), which can work with gaseous or subcooled liquid (He-I or He-II) from room temperature down to 1.6 K. The flow is produced between two counter-rotating or co-rotating disks. The large size of the e...

متن کامل

Dynamic Contact Problem for Viscoelastic von Kármán-Donnell Shells

We deal with initial-boundary value problems describing vertical vibrations of viscoelastic von Kármán-Donnell shells with a rigid inner obstacle. The short memory (Kelvin-Voigt) material is considered. A weak formulation of the problem is in the form of the hyperbolic variational inequality. We solve the problem using the penalization method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2017

ISSN: 0022-0396

DOI: 10.1016/j.jde.2017.02.009